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Abstract

Context Management of wintering waterfowl in

North America requires adaptability because constant

landscape and environmental change challenges exist-

ing management strategies regarding waterfowl habitat

use at large spatial scales. Migratory waterfowl includ-

ing mallards (Anas platyrhynchos) use the lower Mis-

sissippi Alluvial Valley (MAV) for wintering habitat,

making this an important area of emphasis for

improving wetland conservation strategies, while

enhancing the understanding of landscape-use patterns.

Objectives We used aerial survey data collected in

the Arkansas portion of the MAV (ARMAV) to

explain the abundance and distribution of mallards in

relation to variable landscape conditions.

Methods We used two-stage, hierarchical spatio-

temporal models with a random spatial effect to

identify covariates related to changes in mallard

abundance and distribution within and among years.

Results We found distinct spatio-temporal patterns

existed for mallard distributions across the ARMAV
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and these distributions are dependent on the surround-

ing landscape structure and changing environmental

conditions. Models performing best indicated seasonal

surface water extent, rice field, wetland and fallow

(uncultivated) fields positively influenced mallard

presence. Rice fields, surface water and weather were

found to influence mallard abundance. Additionally,

the results suggest weather and changing surface water

affects mallard presence and abundance throughout

the winter.

Conclusions Using novel datasets to identify which

environmental factors drive changes in regional wild-

life distribution and abundance can improve manage-

ment by providing managers additional information to

manage land over landscapes spanning private and

public lands. We suggest our analytical approach may

be informative in other areas and for other wildlife

species.

Keywords Species distribution modeling � Spatial

random effect � Species-habitat relationships � Anas
platyrhynchos � Waterbird � Waterfowl

Introduction

Effective wildlife management and planning require

an understanding of the ecological factors influencing

the distribution of species in space and time (Pressey

et al. 2007). Investigations of spatial patterns and

relationships within a study system are necessary to

enhance the predictive ability of distribution models

(Merow et al. 2014, Yackulic and Ginsberg 2016).

Additionally, species distributions are inherently

determined by ecological processes across a land-

scape, and tend to fluctuate temporally, especially

when considering the ecology of highly mobile

migratory species (Greenberg and Marra 2005; Beatty

et al. 2014a). Thus, migratory species pose unique

challenges for habitat managers, and knowledge on

temporal habitat dynamics across a landscape could

improve management strategies (Pickens and King

2014; Runge et al. 2016).

Species distribution models typically include prior

knowledge of ecological relationships at appropriate

spatio-temporal scales, and numerous studies have

examined the effects of spatial and temporal scaling on

species distribution models (Wiens 1989; Merow et al.

2014; Holland and Yang 2016). However, challenges

arise when incorporating both local- and landscape-

scale characteristics into species distribution models

because ambiguity exists without categorization of

meaningful biological scales (Mazerolle and Villard

1999; Thornton et al. 2011). For example, spatial

patterns can be overlooked in a study that only

examines an ecological variable as a function of

discrete patches compared to a study that examines a

variable as a function of a continuous landscape

(Chakraborty et al. 2010). As species distributions are

predicted to be impacted by the effects of climate

change and landscape modification, studies incorpo-

rating neighborhood effects and spatial patterns into

distribution models can improve management plan-

ning (Almaraz et al. 2012; Anderson 2013; McGarigal

et al. 2016).

The mallard (Anas platyrhynchos) provides one

example of a highly mobile species that behaviorally

adapts to spatial and temporal fluctuations in the

availability of resources. Specifically, the abundance

and distribution of wintering mallards vary spatially

within and among years in the lower Mississippi

Alluvial Valley (MAV) (Nichols et al. 1983). Theory

suggests that migratory waterfowl select habitat in

order of geographic scale, from (1) geographic region,

(2) wetland systems, (3) site-specific locations and,

lastly,(4) microhabitat (Johnson 1980; Kaminski and

Elmberg 2014; Beatty et al. 2014a). For example,

mallards demonstrate different habitat selection pat-

terns as a function of behavior (Beatty et al. 2014a).

However, a specific link between the spatio-temporal

distribution of mallards to temporal variation in

landscape conditions will provide valuable insight

into the effects of landscape conditions on the ecology

of a migratory bird (Ji and Jeske 2000; Pernollet et al.

2015). Consequently, understanding the potential

ecological drivers of mallard winter movement and

habitat selection will improve waterfowl management

and conservation (Heitmeyer 2006; Baldassarre and

Bolen 2006).

The mallard is the most abundant waterfowl species

in North America and the MAV winters the majority

of the continental population in most years (Bellrose

1980; Green and Krementz 2008; USFWS et al. 2012).

As such, waterfowl biologists in the MAV prioritize

mallard populations in developing hunting regulations

and wetland management plans (USFWS and CWS

1986; Drilling et al. 2002). Pearse et al. (2012)
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previously modelled mallard habitat associations, but

robust statistical models of spatio-temporal variation

for winter mallard distributions have not been devel-

oped. Studies have analyzed the relationships of

certain covariates to mallard habitat use in the MAV,

but only at local sites or at sites with mallards present

(Pearse et al. 2012; Beatty et al. 2014a; Hagy and

Kaminski 2015). Thus, a need exists for insight into

large-scale spatio-temporal waterfowl habitat avail-

ability (Haig et al. 1998; Almaraz et al. 2012). An

expansion in the understanding of mallard spatial

ecology will benefit not only mallards, but other

wetland-dependent species in the MAV (Pearse et al.

2012).

In this study, we used a novel dataset of landscape-

scale mallard observations to examine the effects of

landscape composition on mallard abundance and

distribution in the MAV in the state of Arkansas, USA

(ARMAV). Specifically, our objectives were to: (1)

evaluate the effects of landscape composition and

temporally dynamic environmental conditions on the

distribution and abundance of non-breeding mallards

over time and space throughout the winter over a

seven-year period; (2) assess the performance of

landscape composition in predicting the distribution

and abundance of mallards across the ARMAV; and

(3) develop spatially explicit probabilities of mallard

abundance within the ARMAV. To meet our objec-

tives, we developed two-stage, hierarchical Bayesian

spatio-temporal models with spatial random effects.

We then predicted mallard abundance in both sampled

and unsampled areas in spatially and temporally

dynamic habitat. We evaluated the spatial perfor-

mance of the model to identify areas where the model

fully or partially explained local mallard abundance.

Methods

Study area

The MAV covers 10 million ha and includes areas of

six states in the southern United States; Arkansas

contains approximately 37% of the MAV (Reinecke

et al. 1989). Prominent land cover types in the

ARMAV during our study included soybean fields

(Glycine spp.), rice fields (Oryza spp.), fallow fields

(uncultivated), corn fields (Zea spp.), wetlands (bot-

tomland hardwood forests and herbaceous wetlands),

and permanent water (USDA-NASS 2009–2015)

(Fig. 1).

Survey design

We used diurnal mallard observations collected from

25 Arkansas Game and Fish Commission aerial

surveys of fixed-width (250 m) transects in the

ARMAV from 2009 to 2016. Surveys were randomly

stratified and observers recorded the date, number of

individual mallards detected and geographic coordi-

nates of mallard observations. In the first 4 years of the

study, four surveys were completed each year in mid-

November, mid-December, early-January and late-

January. The final 3 years did not include late-January

surveys. Transects were randomly chosen with selec-

tion weighted by strata. The first 2 years of the study

the ARMAV was separated into five strata based on

expert opinion, and in the next 5 years, the ARMAV

was divided into 11 strata based on the watersheds

(Lehnen 2013). Total length of combined transects for

each survey ranged from 3700 to 5600 km.

Covariates

We quantified 13 covariates known to influence

mallard habitat use in winter (Nichols et al. 1983;

Allen 1987; Reinecke et al. 1989; Heitmeyer 2006;

Beatty et al. 2014a, b). Overall landscape composition

within the ARMAV varied among years, and land

cover covariates were from the annual cropland data

layer (USDA NASS 2009–2015): rice fields (covariate

1), soybean fields (covariate 2), corn fields (covariate

3), permanent water (covariate 4), wetlands (covariate

5), and fallow (uncultivated agriculture) fields (co-

variate 6).

Seasonal surface water that varied among each

survey (hereafter surface water) was used to describe

the extent of seasonally-flooded land across the

landscape (covariate 7). We used Landsat imagery to

identify and quantify surface water for each survey

using the Normalized Water Diversity Index and

surface water was identified with an overall average of

90% accuracy among the 25 classifications (McFe-

eters 1996; USGS 2009–2016). All geoprocessing was

performed in ESRI ArcGIS (ESRI 2015, see supple-

mentary material).

Land that is publicly managed for wildlife by state

and federal agencies (i.e. national wildlife refuges and
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state wildlife management areas) was combined as a

covariate, hereafter managed land (covariate 8).

Wetlands enrolled in the Agricultural Conservation

Easement Program (ACEP), hereafter referred to as

the Wetland Reserve Program (WRP), were added to

assess the potential impact of the program on mallard

habitat use (covariate 9). Covariates 1–9 were quan-

tified as a percentage of area per grid cell (see below).

Waste grain from crops that remain in a field post-

harvest are a food source for waterfowl and can

positively influence mallard space use (Stafford et al.

2006; Kross et al. 2007). To estimate availability of

waste seeds, we used annual county harvest yields for

rice (kg/ha) (covariate 10) and soybean (bushel/ha)

(covariate 11) from the United States Department of

Agriculture (USDA) annual crop data (USDA-NASS

2015). Due to high linear dependence, we did not

include waste corn as a covariate in the analysis. We

assumed a higher crop yield at the county level

resulted in a greater density of waste seeds. The USDA

values were used for November surveys and decreased

in value for each following survey by applying

decomposition rates (Nelms and Twedt 1996). When

cells overlapped two or more counties, we calculated a

mean yield for that cell.

We evaluated the effects of weather on mallard

distribution and abundance with the weather severity

index (WSI; covariate 12) within the ARMAV

(Schummer et al. 2010). We obtained weather data

from United States Historical Climatology Network

data at nine weather stations (Menne et al. 2015) and

WSI values were calculated following Schummer

et al. (2010). We averaged WSI values over days

within surveys and interpolated averaged values

among weather stations to create a smooth gradient

of WSI values within the ARMAV during each survey

period. Negative WSI values indicate temperatures

above 0 �C with no snow and positive WSI values

indicate temperatures below 0 �C with snow (Schum-

mer et al. 2010). Thus, we interpreted negative

parameter estimates for WSI as selection for areas

with warmer conditions and less snow. Linear depen-

dence among covariates was tested prior to model

fitting based on the Variance Inflation Factor (VIF =

1/1 - r2) for each covariate, with r2 being the mul-

tiple correlation coefficient calculated by regressing

that covariate on all other covariates.

Statistical analysis

We developed a grid of 2 km 9 2 km cells to

facilitate modeling mallard distribution and abun-

dance in the ARMAV. We selected 4 km2 cells

because this value corresponded with mean daily

movement distance estimates (3.46 km) for non-

breeding mallards and provided a reasonable compu-

tation time (Beatty et al. 2014a). Each cell was

assigned a value for each covariate as a proportion

(0.0–1.0; land cover) or continuous value (WSI, food

availability). Given that detectability of mallards can

vary among habitat types, especially if canopies are

closed, we assigned mallard abundance per cell to four

categories to reduce potential uncertainty in aerial

surveys due to variable detection among habitats.

Categorical response values reduced the variability

associated with errors from raw counts, which helped

to capture important patterns in abundance data across

spatial as well as temporal scales (Smith et al. 1995;

Chakraborty et al. 2010). The four categories were:

Category 0: no observed mallards, Category 1: 1–15

mallards, Category 2: 16–100 mallards, and Category

3: C100 mallards.

We conceptualized the observed categorical abun-

dance to be a discretized version of an underlying

latent potential abundance (PA) surface over the

ARMAV, modeled as a linear function of covariates.

The PA surface indicated how suitable a specific cell

within the region is for mallards. Thus, the higher the

value of a PA surface, the higher the probability that

we would encounter more mallards in that cell. The

representation of categorical data as latent continuous

variables provided a convenient tool for linking the

environmental covariates with the variation in mallard

prevalence (Albert and Chib 1993). We also incorpo-

rated a spatial random effect (h) to capture autocor-

relation in mallard prevalence among adjacent cells

(Gelfand et al. 2005). Inclusion of this spatial term

allowed us to overcome model inadequacy arising

from: (1) possible non-linearity in the response-

covariate relationship; (2) lack of data on all poten-

tially important covariates; (3) lack of data in

bFig. 1 Land cover from the annual cropland data layer within

the ARMAV (2013). Figure only represents land cover

covariates used during one of 7 years. Legend shows land

cover relevant to the study (USDA NASS 2013)
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unsampled regions within the ARMAV (Gelfand et al.

2005; Chakraborty et al. 2010).

Species prevalence data usually contain a large

proportion of category 0 (absences), and a single PA

surface cannot adequately explain variation in abun-

dance that ranges from category 0 to 3 (Royle and

Nichols 2003).That is, using one surface (one set of

covariate and spatial effects) to model zeros and

nonzeros together may result in poor predictive

properties for the model (Potts and Elith 2006; Wenger

and Freeman 2008). In Bayesian ecological modeling,

there are instances of two-stage modeling for species

prevalence such as the suitability/availability model-

ing in Gelfand et al. (2005) or the potential/trans-

formed abundance approach of Chakraborty et al.

(2010). Therefore, we used a two-stage model, where

the first stage explained the likelihood of a nonzero

observation at a specific cell (mallard presence/

absence) and the second stage explained, conditional

on at least one mallard observation in a cell, the

abundance category of that sighting.

We estimated covariate effects on mallard presence

for each survey (stage 1), covariate effects for the

conditional abundance for each survey (stage 2), and

covariate-specific effects for temporal dependence

across surveys (survey effect) and years (year effects).

We linked abundance data to covariate data through a

latent variable to model presence/absence in the first

stage (see supplemental material Eq. 1). To model

presence only in the second stage, we modeled the

observed abundance category, given presence of

mallards in a cell (see supplemental material Eq. 2).

For each stage, the model has three parts: (1) a fixed

effect mean expressed as a linear combination of

covariates; (2) a spatial random effect (h) to capture

spatial autocorrelation; and (3) a pure error term

accounting for residual variation (e). Our dataset

included mallard observations collected over multiple

surveys and years, so we extended the model into a

spatio-temporal setting. We focused on analyzing

dependence between models at different points of

time, anticipating temporal dependence across surveys

as well as years (see supplemental material Eq. 3). The

temporal association parameters Csurvey and Cyear

facilitated borrowing of information across different

surveys for each covariate. We assigned diffused

normal priors to their components.

We assumed univariate normal distributions for

independent pure error terms with zero means, which

results in a probit regression model for each stage of

the model. For identifiability reasons, variance of e
terms were fixed at 1. It should be noted that fixing the

error variance at 1 does not impose any constraint. If

we parametrized the error standard deviation as r, it

can be shown that the category-specific probabilities

are only functions of b/r. This implies the coefficients

can only be identified relative to a fixed value of r.

Generally, we solve this by setting r = 1. Since the

measure of significance of a covariate effect is

independent of its scale, this assumption does not

limit flexibility of the model. For the vectors of spatial

random effects at any time point, we used conditional

autoregressive (CAR) priors (Banerjee et al. 2004).

We wrote a Markov chain Monte Carlo (MCMC)

estimation scheme (chain length = 35,000, burn-in =

25,000, then thinned at every fifth-iteration) and ran

all models in Program R (Gilks 2005; R Core Team

2015).

Model development

We developed a set of six competing candidate models

to evaluate the spatio-temporal effects on mallard

abundance. The models were developed to assess: (1)

agriculture fields and waste grain abundance; (2)

interactions among surface water and land cover

classes known to be used by mallards; (3) managed

land and their interaction with surface water; (4) the

five most important covariates expected to affect

mallard abundance determined from the scientific

literature; and (5) surface water and permanent water.

We included the full model with all main effects and

no interactions as our sixth and final candidate model

(Table 1).

We conducted a posterior predictive check for all

candidate models with the Bayesian v2 goodness of fit

statistic where p values close to 0.5 indicate adequate

model fit (Johnson 2004). We then evaluated candi-

date models with the Bayesian predictive information

criterion (BPIC; Ando 2007). The BPIC criterion

modifies the commonly used deviance information

criterion of Spiegelhalter et al. (2002) by strengthen-

ing the penalty on model size. The model with the

smallest BPIC value was considered the best perform-

ing model (supplementary material). We interpreted

any covariate with 95% credible intervals not over-

lapping zero as positively ([ zero) or negatively

(\ zero) affecting mallard distribution, and covariates
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with 95% credible intervals overlapping zero had no

effect on mallard distributions. Additionally, we

ranked covariate importance for each survey by

dividing the mean of the covariate by the standard

deviation (SD).

We produced maps of spatial random effects (h) for

each survey to examine trends in covariate perfor-

mance among regions within the ARMAV. Overesti-

mation of mallard abundance by the covariates is

represented by negative h values, whereas underesti-

mation of mallard abundance is represented by

positive h values. Thus, h values closer to zero

represent regions where the covariates within the

model accurately predicted mallard abundance. Ran-

dom variation in h across the cells indicate a lack of

spatial dependence, whereas a smooth pattern with

little differences in h values among nearby cells, but

showing smooth transitions among far away cells, is

considered evidence of spatial association. Finally, we

developed spatial probabilities of mallard abundance

across the ARMAV. We generated posterior maps

with the estimated categorical abundance probabilities

throughout the ARMAV for each survey (see supple-

mental material Eq. 4).

Results

We counted 924,098 individual mallards over all 25

surveys. Transects from all surveys intersected 9657

cells (* 20% of total extent), 3327 of which had at

least one mallard observation. The median amount of

surface water cover in the ARMAV increased every

survey among years (November (1.6%), December

(4.6%), early-January (4.5%), late-January (5.1%)) in

every year. The late-January 2013 and early-January

2014 were the only surveys to have above 10% total

surface water coverage across the ARMAV (12 and

35% coverage, respectively). WSI values ranged from

- 12.9 to 9.2 and the mean WSI values for all surveys

was - 4.5, with early-January (0.26) having the

highest WSI values, followed by late-January

(- 5.7), December (- 6.4), and November (- 10).

All posterior predictive check p values were close

to 0.5 for all models, which indicated all models

Table 1 The six competing models to explain winter mallard abundance and distribution within the ARMAV from 25 aerial surveys

from 2009 to 2016

Model Description Covariates BPICa DBPIC pDb Bayesian

p valuec

Full All main effects All main effects 56791 0 386 0.55

Habitat Known land covers that

mallards use and their

interaction with water

Rice field ? soybean

field ? wetland ? surface water ? fallow

field ? permanent water ? WSI

56848 57 268 0.517

Waterfowl

Importance

Most important covariates for

mallards from previous

research

Surface water ? rice

field ? wetland ? permanent

water ? WSI

57364 573 217 0.548

Managed

Land

Land associated with managed

land and their interaction with

water

Wetland ? WRP ? managed

land ? permanent water ? surface

water ? WSI

57533 742 255 0.496

Water How water alone affects

mallard abundance

distributions.

Surface water ? permanent water 58431 1640 144 0.504

Agriculture Agriculture fields and post-

harvest waste grain left in

fields.

Rice field ? soybean field ? corn

field ? fallow field ? waste rice ? waste

soybean

59058 2267 233 0.492

Competing models included a subset of covariates based on knowledge from previous research. Model performance was ranked by

BPIC and the full model best explained the abundance and distribution of mallards
aBayesian Predictive Information Criterion
bEffective number of parameter
cModel fit measured by A RB [ v2½ �. Values closer to 0.50 (from either direction) are indicative of model adequacy
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adequately fit. The presence of spatial random effects

contributed to adequacy of models with smaller set of

covariates. As expected, the pD values decrease as we

gradually reduce the number of covariates. According

to BPIC, the full model performed best, yet, the habitat

model produced a BPIC value close to the full model,

even with significantly smaller number of parameters

(Table 1). Here, we report results only from the full

model.

The presence of mallards (stage 1) was most

influenced by surface water, wetlands, rice fields,

fallow fields, WSI, open water, and waste rice.

Mallard abundance (stage 2) was most influenced by

only surface water, rice fields, and WSI. WSI nega-

tively influenced the presence of mallards, indicating

severe weather (i.e. high WSI) reduced mallard

presence whereas milder weather increased mallard

presence. In contrast, among locations where mallards

were present, WSI positively influenced abundance,

which implied where mallards were present, severe

weather made it more likely for mallard distributions

to clump. Overall, we found many covariates provided

information of what affects mallard presence, but only

a few of them are informative about to what extent

abundance will occur (Table 2 and supplemental

tables).

Surface water was typically the most important

covariate to positively influence mallard presence (12

of 25 surveys) and abundance (12 of 25 surveys)

(Table 2 and supplementary tables). Temporally,

surface water, wetlands, rice fields, waste rice and

open water positively influenced presence and abun-

dance from November to late-January (supplementary

tables). We found WSI positively influenced mallard

presence in November but then negatively influenced

mallard presence from December to late-January,

which coincides with an increase in severe weather

conditions (supplementary tables). With respect to the

temporal dependence in covariate effects, we found

surface water, wetlands, rice, soybean, and fallow

fields had positive associations for the presence of

mallards across surveys within the same year. Only

surface water and WSI were found to have positively

correlated effects on abundance between successive

months (Table 3). For surveys conducted at same

month in consecutive years, surface water, wetlands,

open water, rice and fallow fields were positively

associated with presence, whereas only surface water

and rice field positively influenced abundance. All

significant temporal parameters among years had a

posterior mean between 0 and 1 indicating stationary

pattern of these covariate effects in the long run

Table 2 Posterior covariate estimates for winter mallard abundance distributions in the ARMAV from 2009 to 2016

Covariate Effect on Mallards Total highest mean/SD

Stage 1 (Pos/Neg) Stage 2 (Pos/Neg) Stage 1 Stage 2

Rice field 20/0 18/0 6 5

Soybean field 10/0 3/0 0 0

Wetland 25/0 0/3 5 1

Corn field 0/1 0/0 0 0

Surface water 23/0 21/0 12 12

Open water 17/0 1/1 1 0

Fallow field 20/0 0/0 0 0

Managed land 2/1 6/0 0 0

WRP 3/1 0/0 0 0

WSI 5/12 12/0 2 7

Waste rice 13/1 0/0 0 0

Waste soybean 6/1 0/0 0 0

Results are from the full model, which performed best by BPIC. Numbers represent the frequency at which 95% credible intervals for

a covariate did not overlap 0 and positively or negatively influenced mallard abundance for the 25 surveys. Last column represents

the number of times a covariate was the most important for a survey, ranked by dividing the covariate mean by the standard deviation

(SD). Stage 1 modeled presence and absence of mallards and stage 2 modeled mallard abundance where mallards were present
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(Table 3). However, given that we have only 7 years

of data, a longer dataset is necessary to confirm any

long-term pattern of yearly association.

We found the presence of mallards was spatially

correlated in all surveys (Fig. 2 and supplementary

figures). The spatial effects (h) for the presence of

mallards at latitudes between 34 and 36� generally had

h values close to zero, suggesting the covariates

explained mallard presence well. The western portion

(longitudes - 91.5 to - 92.0�) of the ARMAV had

high positive h values in 11 of 25 surveys. Negative h
values tended to be in the southern (below 34�) and

northern (above 36�) latitudes of the ARMAV (Fig. 2

and supplementary figures). A spatial pattern also was

apparent in the presence of mallard abundance prob-

abilities. In five of seven November surveys, the

probability for the presence of mallards was higher in

the northern portion of the ARMAV. In six of seven

December surveys and all of the early-January and

late-January surveys, the probability for the presence

of mallards redistributed south (supplementary fig-

ures). The probability of absence was high throughout

the ARMAV and consistent among surveys, implying

that a large portion of the ARMAV is of lower value

for mallards. We found the probability of absence was

highest in the northeastern portion of the ARMAV east

Table 3 Survey effect and year effect posterior estimates from the combined year full model explaining mallard distribution in the

ARMAV

Survey Effect Year Effect

95%CI Lower Mean 95%CI Upper 95%CI Lower Mean 95%CI Upper

Stage 1

Rice field 0.0235 0.4098 0.8389 0.2731 0.6404 1.0001

Soybean field 0.0809 0.7683 1.4920 - 0.1237 0.4381 0.9617

Wetland 0.1204 0.5400 0.9409 0.1679 0.5222 0.8648

Corn field - 0.7008 - 0.0855 0.5034 - 0.7924 - 0.0231 0.9623

Surface water 0.0897 0.2958 0.5476 0.4854 0.7247 0.9321

Open water - 0.1068 0.3511 0.9298 0.2154 0.6753 1.0730

Fallow field 0.0238 0.3909 0.8211 0.3564 0.7443 1.0916

Managed land - 0.9061 0.0483 1.1019 - 1.1593 - 0.1107 0.9209

WRP - 0.3872 0.2949 0.9172 - 0.2597 0.4347 1.0915

WSI - 0.0786 0.2943 0.6695 0.1728 0.4536 0.7343

Waste rice - 0.4628 0.4170 1.2500 - 0.4235 0.3516 1.1171

Waste soybean - 0.6572 0.1001 0.8831 - 0.8159 - 0.0041 0.8786

Stage 2

Rice field - 0.0309 0.3131 0.9227 0.1344 0.6586 0.9932

Soybean field - 0.2832 0.4301 1.0806 - 0.4470 0.2724 0.8844

Wetland - 0.1265 0.4246 0.9459 - 0.8591 - 0.0429 0.9343

Corn field - 1.0641 0.3724 1.5116 - 0.7564 0.1501 0.8629

Surface water 0.0034 0.3395 0.7735 0.3127 0.6955 1.0388

Open water - 1.2444 - 0.2025 0.6949 - 0.4817 0.2843 1.0584

Fallow field - 0.6665 0.4564 1.3864 - 0.6213 0.1393 0.7512

Managed land - 0.2648 0.1978 0.7168 - 0.1277 0.6527 1.1983

WRP - 0.5748 0.1508 0.8653 - 0.6767 0.1953 0.9808

WSI 0.2155 0.7459 1.2125 - 0.0483 0.3003 0.7453

Waste rice - 0.6277 0.2217 1.0610 - 0.9854 - 0.1428 0.6645

Waste soybean - 0.6031 0.2648 1.0561 - 1.0281 - 0.2811 0.5056

Stage 1 (top) modeled mallard presence and absence and stage 2 (bottom) modeled mallard abundance where mallards were present.

Covariates with 95% confidence intervals not overlapping zero are highlighted in gray
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of -91.0� and north of 34.5� (Fig. 3 and supplementary

figures). The probability for 1–10 mallards present

was highest along the Mississippi River south of 34.5�,
and in a block of managed lands (Bald Knob National

Wildlife Refuge and Henry Gray Hurricane Lake, Rex

Hancock Black Swamp, and Steve N. Wilson Raft

Creek Bottoms Wildlife Management Areas) adjacent

to the northwestern ARMAV bluff line. The proba-

bility for 10–100 and over 100 mallards present was

highest around the same region that 1–10 mallards

were located, as well as in a group of cells in the Grand

Prairie Ecoregion near Stuttgart, AR (Fig. 3 and

supplemental figures). In addition to visualizing

spatial patterns and distributions, the model allows

for a regional examination of covariate performance,

which can be extended to all covariates and surveys.

As surface water and WSI were both strong predictors

of mallard presence and abundance, their distributions

can be compared to the distribution of mallards and the

distribution of the spatial random effect. Further,

models without important ecological variables (i.e.

surface water, WSI), as in our agriculture model, can

be visualized to see the poor predictive nature of the

model (Fig. 4).

Discussion

We modeled dynamic and ephemeral resources in a

heterogeneous landscape using a biologically mean-

ingful scale to predict the distribution of a wetland-

dependent migratory bird (Holland et al. 2009;

Fig. 2 Spatial random effects (h) for the presence/absence of

mallards across the ARMAV for the early-January 2014

waterfowl survey from the full model. Values of h explains

the performance of covariates used in the model. Positive h
values represent cells with more mallards than expected and

negative h values represent cells with less mallards than

predicted. A correlated spatial pattern is shown, because a

smooth gradient of h values exists. The entire surface of h values

across the ARMAV equals 1.0

Fig. 3 Probability surfaces

for mallard abundances to

occur within the ARMAV

during early-January 2014,

predicted by the full model.

Category 0 = no mallards

present, Category 1 = 0–10

mallards present, Category

2 = 11–100 mallards

present, Category 3C100

mallards present. The

probability of all categories

equals to 1.0 for each cell

123

1328 Landscape Ecol (2018) 33:1319–1334



Leblond et al. 2011; McGarigal et al. 2016). Extent

and distribution of surface water associated with

selected land cover had the most influence on mallard

presence (wetlands, rice fields, and fallow fields) and

abundance (rice fields), supporting past research on

mallard space use. Although previous research has

identified surface water as an important factor driving

mallard abundance (Allen 1987; Reinecke et al. 1988;

Davis et al. 2011), we included temporal variation in

surface water to improve the predictive ability of our

species distribution model (Pickens and King 2014;

Yackulic and Ginsberg 2016). Additionally, the

visualization of ecological patterns at the landscape

levels are improved by incorporating covariates into

hierarchical models (e.g. surface water, WSI) at the

smallest scale, especially when many land cover

covariates are static at the macro habitat level (Bastos

et al. 2016). Indeed, recent waterfowl research has

relied on static land cover datasets (e.g. National Land

Cover Dataset) that have a limited capacity to detect

surface water (Beatty et al. 2014a). The land cover

covariates used from the cropland data layer were

static within season, but changed among season, and

our extensive multi-year dataset allowed for reliable

Fig. 4 Effects of covariates on the predictive capability of the

spatio-temporal model for mallard distribution and abundance.

Figure represents mallard observations of the late-January

survey, which is one of 25 surveys used in the study. Part

a results of the spatial random effects (bottom) and predicted

categorical abundance (top) from the full model, which was the

best performing model. Part b distribution of significant

covariates surface water (top) and WSI (bottom) during the

late-January 2013 survey. Part c results of the spatial random

effects (bottom) and predicted categorical abundance (top) from

the agriculture model, which was the worst performing model.

Surface water and WSI were not included in the agriculture

model. The full model predicted more mallards to be present the

southwestern portion of the ARMAV (part-a top), coinciding

with higher amounts of surface water and less severe weather

(negative WSI values). Additionally, the covariates fully

explained mallard presence in the southwestern portion of the

ARMAV (part-a bottom). Whereas the agriculture model did not

predict mallards to be in the southwestern portion of the

ARMAV (part-c top) and the covariates did not fully explain the

presence of mallards in the same region (part c-bottom)
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predictions of mallard distributions (USDA-NASS

2015; Yackulic and Ginsberg 2016).

We found mallards were clumped among wetlands

farther south in the ARMAV. The spatial random

effect found our covariates over-predicted mallard

presence in a span of wetlands in the northern

ARMAV. The spatial random effect illustrated pat-

terns that were not fully explained by the model, so

future research can investigate other ecological char-

acteristics that may structure mallard space use

patterns (Banerjee and Fuentes 2012; Allen et al.

2013). For example, our model expected more mal-

lards to use the northern ARMAV than we observed,

and researchers could investigate possible regional

factors such as hunting pressure that could be driving

mallards to under-utilize the area (Johnson 2007; St.

James et al. 2013). Furthermore, restoration of lower

MAV wetlands has fallen short of goals, illustrating

the importance of elucidating regional factors that

drive mallard distribution to understand processes at

larger spatial scales, such as the entire ARMAV

(Kross et al. 2008; Faulkner et al. 2011; Leach et al.

2012).

Publicly managed lands provide a small proportion

of overall wildlife habitat in the USA (Runge et al.

2016). Consequently, private lands contain the vast

majority of potential wildlife habitat, and identifica-

tion of private lands with quality habitat allows

management planners to consider the capacity of

these areas to support wildlife populations (Leblond

et al. 2011). Our models suggested agricultural land

was consistently more important for mallards than

managed land, which was unexpected because these

managed lands provide higher quality wetland habitat

(Reinecke et al. 1989; King and Keeland 1999).

However, we consistently found that mallard distri-

butions predicted to be on agriculture fields were part

of wetland systems that had publicly managed

wetlands, specifically within two to ten kilometers of

managed land (Fig. 1 and supplemental figures). Our

observations were entirely diurnal, and mallards can

make daily movements between diurnal and nocturnal

locations (Davis et al. 2011; Beatty et al. 2014b).

Diurnal location decisions are thought to be driven in

large part by hunting pressure, and considerable

diurnal hunting pressure occurs within publicly man-

aged lands in the ARMAV. We emphasize our

analyses of diurnal locations are appropriate because

diurnal habitat meet critical resource needs, for

example, as sanctuary habitat during the hunting

season (St. James et al. 2013).

Cultivated crops can provide spatially and tempo-

rally predictable and concentrated sources of food for

wildlife (Allen 1987; Stafford et al. 2010). As

expected, we found that rice fields had the strongest

influence on mallard abundance of any agriculture

habitat in the ARMAV. The attraction to rice fields

most likely resulted from the valuable nutrients

provided by waste rice that are needed in the winter

months and the physical structure more often present

in rice fields than soybean fields (Kross et al. 2007;

Stafford et al. 2010). However, rice fields must be

inundated with surface water for mallards to feed on

waste rice, and without regular inundation of rice

fields, waste rice and waste soybean can equally

contribute to total food intake (Delnicki and Reinecke

1986). We did find soybean fields were a predictor of

mallard distributions, but they were never the most

important covariate, most likely because soybeans

degrade faster and provide fewer nutrients than rice

(Nelms and Twedt 1996). Therefore, due to spatio-

temporal variations in seasonal flooding of rice fields,

we suggest that mallards were simply using soybean

fields due to their high abundance (31–34% of total

extent), compared to the lower abundance of rice fields

(10–17% total extent). The consistently strong influ-

ence of rice fields on mallard abundance indicates

preference for this less-available habitat (Kross et al.

2007, 2008). Additionally, our measurement of waste

grain was an attempt to test if crop yields can serve as a

proxy for waste grains in landscape scale studies, and

we found evidence that a measurement of landscape

level waste grain can be useful when describing

mallard presence. However, Stafford et al. (2006) did

find that waste grain measurements can vary among

single fields. Consequently, we caution against relying

solely on crop yields for waterfowl distribution

models. Also, management recommendations have

suggested the availability of agriculture habitat rather

than waste grain is more reliable predictor of water-

fowl abundance, which more aligns with our overall

results (Hagy et al. 2014).

Notably, our analysis advances modeling by incor-

porating an abiotic weather variable (WSI) along with

biotic factors to predict species spatio-temporal

distributions (Albanese et al. 2012; Anderson 2013;
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Notaro et al. 2014). Current climate models predict

changes in waterfowl migration and non-breeding

distributions, so a need exists for climate to be

incorporated in species distribution models (Guille-

main et al. 2013; Beatty et al. 2017). Whereas

Schummer et al. (2010) analyzed the relationship

between weather and waterfowl at waterfowl man-

agement areas within Missouri, as we are aware, this

was the first study to use the WSI in distribution

models at a large extent (ARMAV). Although local-

ized weather does not represent climate, we found that

within the ARMAV, the weather affected mallard

abundance and distribution, and mallards moved

within the ARMAV towards less severe weather

conditions. Mallards sought the same habitat type

throughout the winter regardless of the time of year,

and we found mallard distributions moved south as the

winter progressed, coinciding with more severe

weather. Consequently, our results emphasize a tem-

porally dynamic management strategy within the

winter season, which could allocate management

resources appropriately throughout the MAV as a

function of time of year. This emphasizes the need to

incorporate time of year in management strategies so

enough resources are available in the southern

ARMAV later in the winter, when less mallards will

be in the northern ARMAV and more will be in the

southern ARMAV. Mallards will make regional

movements in response to weather conditions and

we found this to occur within one ecoregion (Nichols

et al. 1983). Although WSI was developed to quantify

weather conditions for waterfowl, similar indices

could be developed and included in species distribu-

tions for other taxa.

Considerable research on mallard habitat use in

the MAV suggests many factors influence mallard

abundance distributions (Fredrickson and Heitmeyer

1988; Kross et al. 2007; Davis et al. 2011).

However, a spatio-temporal analysis of mallard

distributions from a multi-year dataset at the land-

scape scale has been lacking and is necessary to

assess factors affecting waterfowl abundance (Al-

maraz and Amat 2004). We found that mallards use

a mosaic of habitats, and extensive surface water is

necessary to sustain large populations of mallards.

By documenting temporal variation in habitat con-

ditions from remotely sensed data and accounting

for spatio-temporal variation in the model, we have

improved the understanding of waterfowl ecology in

the MAV (Albanese et al. 2012; Pickens and King

2014). Our results provide managers with additional

information on how dynamic variation in ecological

variables (i.e. weather, surface water) affect the

spatio-temporal distribution of mallards. Further, we

showed that agriculture land is important over a

large landscape, so management strategies can use

our results to work with private land owners to

improve the private management of land for water-

fowl conservation. Additionally, our predictive

models may prove to be critical if the extent of

winter habitats continues to be reduced, thus altering

the hydrology of the ARMAV. Using long-term data

sets to model migratory bird distribution and

abundance is becoming increasingly prevalent, and

we suggest our approach to model species distribu-

tions should be further refined and applied to other

migratory animals (Pacifici et al. 2016).
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